FtsK translocation on DNA stops at XerCD-dif
نویسندگان
چکیده
Escherichia coli FtsK is a powerful, fast, double-stranded DNA translocase, which can strip proteins from DNA. FtsK acts in the late stages of chromosome segregation by facilitating sister chromosome unlinking at the division septum. KOPS-guided DNA translocation directs FtsK towards dif, located within the replication terminus region, ter, where FtsK activates XerCD site-specific recombination. Here we show that FtsK translocation stops specifically at XerCD-dif, thereby preventing removal of XerCD from dif and allowing activation of chromosome unlinking by recombination. Stoppage of translocation at XerCD-dif is accompanied by a reduction in FtsK ATPase and is not associated with FtsK dissociation from DNA. Specific stoppage at recombinase-DNA complexes does not require the FtsKgamma regulatory subdomain, which interacts with XerD, and is not dependent on either recombinase-mediated DNA cleavage activity, or the formation of synaptic complexes.
منابع مشابه
Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase
Bacteria harbouring circular chromosomes have a Xer site-specific recombination system that resolves chromosome dimers at division. In Escherichia coli, the activity of the XerCD/dif system is controlled and coupled with cell division by the FtsK DNA translocase. Most Xer systems, as XerCD/dif, include two different recombinases. However, some, as the Lactococcus lactis XerS/dif(SL) system, inc...
متن کاملActivation of XerCD-dif recombination by the FtsK DNA translocase
The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furt...
متن کاملTPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse
Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is tho...
متن کاملKOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation
The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK gamma regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region (ter) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final ch...
متن کاملA Defined Terminal Region of the E. coli Chromosome Shows Late Segregation and High FtsK Activity
BACKGROUND The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV. METHODOLOGY We have used XerCD/dif recombination as a genetic t...
متن کامل